******************** Notation and Symbols ******************** .. _common_notation: .. list-table:: Common Notation :header-rows: 1 :widths: 10 25 :align: center * - Notation - Meaning * - :math:`x` - a scalar * - :math:`\vec{x}` - a vector * - :math:`x^y` - a scalar raised to a power, where :math:`y` is a scalar * - :math:`\vec{x}^c` - a vector in the coordinate system :math:`c` * - :math:`\vec{x}_{B/A}` - a vector from point A to point B ("B with respect to A") * - :math:`{^r \dot{\vec{x}}}` - the derivative of a vector taken in reference frame :math:`\mathcal{F}_r` * - :math:`x_k` - a variable at index :math:`k` of a sequence of length :math:`K` * - :math:`x^{(n)}` - element :math:`n` of a set of :math:`N` elements * - :math:`\mat{X}_{M \times N}` - a matrix with :math:`M` rows and :math:`N` columns * - :math:`\mat{X}^z` - a matrix exponential, where :math:`z` is a scalar * - :math:`\left| x \right|` - absolute value of a scalar * - :math:`\norm{\vec{x}}` - Euclidean norm of a vector * - :math:`\left| \mat{X} \right|` - determinant of a matrix * - :math:`\mat{C}_{b/a}` - the directed cosine matrix that transforms vectors from coordinate system :math:`a` into coordinate system :math:`b` * - :math:`\vec{q}_{b/a}` - a quaternion that encodes the relative orientation of coordinate system :math:`b` relative to coordinate system :math:`a` * - :math:`\vec{\omega}_{b/a}` - angular velocity vector of frame :math:`\mathcal{F}_b` with respect to frame :math:`\mathcal{F}_a` * - :math:`f(\cdot)`, :math:`func(\cdot)`, etc - functions, where ``f``, ``func``, can be any identifier Another notation which is useful when building systems of equations involving matrices is the *cross-product matrix operator*, so that :math:`\crossmat{\vec{v}} \vec{x} \equiv \vec{v} \times \vec{x}`: .. _crossmat: .. math:: \crossmat{\vec{v}} \defas \begin{bmatrix} 0 & -v_3 & v_2\\ v_3 & 0 & -v1\\ -v_2 & v_1 & 0 \end{bmatrix} By their nature, vectors require the most intricate notation, since a fully specified vector might include all of: 1. A reference frame 2. A coordinate system 3. A fixed point (if it's a bound vector) For simplicity, :numref:`common_notation` only shows examples of each distinct element of a vector encoding. In practice, vectors may appear quite complex; for some realistic examples taken from :cite:`stevens2015AircraftControlSimulation`: .. math:: \begin{aligned} \vec{p}_{A/B} &\defas \text{the position of the point A with respect to point } B \\ \vec{v}_{A/i} &\defas \text{the velocity vector of a point } A \text{ in frame } \mathcal{F}_i \\ ^b \dot{\vec{v}}_{A/i} &\defas \text{the vector derivative of } \vec{v}_{A/i} \text{ taken in frame } \mathcal{F}_b \\ \vec{v}^c_{A/i} &\defas \text{array of components of } \vec{v}_{A/i} \text{ in coordinate system } c \\ ^b \dot{\vec{v}}^c_{A/i} &\defas \text{components in coordinate system } c \text{ of the derivative taken in frame } \mathcal{F}_b \end{aligned}